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Abstract

This paper presents an innovative self-tuning nonlinear controller ASPECT (advanced control algorithms for programmable logic

controllers). It is intended for the control of highly nonlinear processes whose properties change radically over its range of

operation, and includes three advanced control algorithms. It is designed using the concepts of agent-based systems, applied with the

aim of automating some of the configuration tasks. The process is represented by a set of low-order local linear models whose

parameters are identified using an online learning procedure. This procedure combines model identification with pre- and post-

identification steps to provide reliable operation. The controller monitors and evaluates the control performance of the closed-loop

system. The controller was implemented on a programmable logic controller (PLC). The performance is illustrated on a field test

application for control of pressure on a hydraulic valve.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Modern control theory offers many control methods
to achieve more efficient control of nonlinear processes
than provided by conventional linear methods, taking
advantage of more accurate process models (Bequette,
1991; Henson & Seborg, 1997; Murray-Smith &
Johansen, 1997). Surveys (Takatsu, Itoh, & Araki,
1998; Seborg, 1999) indicate that while there is a
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considerable and growing market for advanced con-
trollers, relatively few vendors offer turn-key products.

Excellent results of advanced control concepts, based
on fuzzy parameter scheduling (Tan, Hang, & Chai,
1997; Babuška, Oosterhoff, Oudshoorn, & Bruijn,
2002), multiple-model control (Dougherty & Cooper,
2003; Gundala, Hoo, & Piovoso, 2000), and adaptive
control (Henson & Seborg, 1994; Hägglund & Åstrom,
2000), have been reported in the literature. However,
there are several restrictions for applying these methods
in industrial applications, as summarised below:
1.
 Because of the diversity of real-life problems, a single
nonlinear control method has a relatively narrow
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field of application. Therefore, more flexible methods
or a toolbox of methods are required in industry.
2.
 New methods are usually not available in a ready-to-
use industrial form. Custom design requires consider-
able effort, time and money.
3.
 The hardware requirements are relatively high, due to
the complexity of implementation and computational
demands.
4.
 The complexity of tuning (Babuška et al., 2002) and
maintenance makes the methods unattractive to
nonspecialised engineers.
5.
 The reliability of nonlinear modelling is often in
question.
6.
 Many nonlinear processes can be controlled using the
well-known and industrially proven PID controller.
A considerable direct performance increase (financial
gain) is demanded when replacing a conventional
control system with an advanced one. The main-
tenance costs of an inadequate conventional control
solution may be less obvious.

The aim of this work is to design an advanced
controller that addresses some of the aforementioned
problems by using the concepts of agent-based systems
(ABS) (Wooldridge & Jennings, 1995). The main
purpose is to simplify controller configuration by partial
automation of the commissioning procedure, which is
typically performed by the control engineer. ABS solve
difficult problems by assigning tasks to networked
software agents. The software agents are characterised
by properties such as autonomy (operation without
direct intervention of humans), social ability (interaction
with other agents), reactivity (perception and response
to the environment), pro-activeness (goal-directed be-
haviour, taking the initiative), etc. This work does not
address issues of ABS theory, but rather the application
of the basic concepts of ABS to the field of process
systems engineering. In this context, a number of limits
have to be considered. For example: initiative is
restricted, a high degree of reliability and predictability
is demanded, insight into the problem domain is limited
to the sensor readings, specific hardware platforms are
used, etc.

The ASPECT controller is an efficient and user-
friendly engineering tool for implementation of para-
meter-scheduling control in the process industry. The
commissioning of the controller is simplified by auto-
matic experimentation and tuning. A distinguishing
feature of the controller is that the algorithms are
adapted for implementation on PLC or open controller
industrial hardware platforms.

The controller parameters are automatically tuned
from a nonlinear process model. The model is obtained
from operating process signals by experimental model-
ling, using a novel online learning procedure. This
procedure is based on model identification using the
local learning approach (Murray-Smith & Johansen,
1997, p. 188). The measurement data are processed
batch-wise. Additional steps are performed before and
after identification in order to improve the reliability of
modelling, compared to adaptive methods that use
recursive identification continuously (Hägglund & Ås-
trom, 2000).

The nonlinear model comprises a set of local low-
order linear models, each of which is valid over a
specified operating region. The active local model(s) is
selected using a configured scheduling variable. The
controller is specifically designed for single-input, single-
output processes that may include a measured dis-
turbance used for feed-forward. Additionally, the
application range of the controller depends on the
selected control algorithm. A modular structure of the
controller permits use of a range of control algorithms
that are most suitable for different processes. The
controller monitors the resulting control performance
and reacts to detected irregularities.

The controller comprises the run-time module (RTM)
and the configuration tool (CT). The RTM runs on a
PLC, performing all the main functionality of real-time
control, online learning and control performance
monitoring. The CT, used on a personal computer
(PC) during the initial configuration phase, simplifies the
configuration procedure by providing guidance and
default parameter values.

The outline of the paper is as follows: Section 2
presents an overview of the RTM structure and
describes its most important modules; Section 3 gives
a brief description of the CT; and finally, Section 4
describes the application of the controller to a pilot
plant where it is used for control of the pressure
difference on a hydraulic valve in a valve test apparatus.
2. Run-Time Module

The RTM of the ASPECT controller comprises a set
of modules, linked in the form of a multi-agent system.
Fig. 1 shows an overview of the RTM and its main
modules: the signal pre-processing agent (SPA), the
online learning agent (OLA), the model information
agent (MIA), the control algorithm agent (CAA), the
control performance monitor (CPM), and the operation
supervisor (OS).

2.1. Multi-faceted model (MFM)

The ASPECT controller is based on the multi-faceted
model concept proposed by Stephanopoulus, Henning,
and Leone (1990) and incorporates several model forms
required by the CAA and the OLA. Specifically, the
MFM includes a set of local first- and second-order
discrete-time linear models with time delay and offset,
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Fig. 1. Run-time module overview.

S. Gerkšič et al. / Control Engineering Practice 14 (2006) 935–948 937
which are specified by a given scheduling variable s(k).
The model equation of first order local models is

yðk þ 1Þ ¼ �a1; jyðkÞ þ b1; juðk � dujÞ þ c1; jvðk � dvjÞ þ rj,

(1)

while the model equation of second order models is

yðk þ 1Þ ¼ � a1; jyðkÞ � a2; jyðk � 1Þ þ b1; juðk � dujÞ

þ b2; juðk � 1� dujÞ þ c1; jvðk � dvjÞ

þ c2; jvðk � 1� dvjÞ þ rj , ð2Þ

where k is the discrete time index, j is the number of the
local model, y(k) is the process output signal, u(k) is the
process input signal, v(k) is the optional measured
disturbance signal (MD), du is the delay in the model
branch from u to y, dv is the delay in the model branch
from v to y, and ai,j, bi,j, ci,j and rj are the parameters of
the jth local model.

The set of local models can be interpreted as a
Takagi–Sugeno fuzzy model, which in the case
of a second order model can be expressed in the
following form:

yðk þ 1Þ ¼ �
Xm

j¼1

bjðkÞa1; jyðkÞ �
Xm

j¼1

bjðkÞa2; jyðk � 1Þ

þ
Xm

j¼1

bjðkÞb1; juðk � dujÞ

þ
Xm

j¼1

bjðkÞb2;juðk � 1� dujÞ

þ
Xm

j¼1

bjðkÞc1; jnðk � dnjÞ

þ
Xm

j¼1

bjðkÞc2; jnðk � 1� dnjÞ þ
Xm

j¼1

bjðkÞrj,

ð3Þ

where bj( k) is the value of the membership function of
the jth local model at the current value of the scheduling
variable s(k). Normalised triangular membership func-
tions are used, as illustrated in Fig. 2.
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Fig. 2. Fuzzy membership functions of local models in the MFM.
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The scheduling variable s(k) is calculated using
coefficients kr, ky, ku, and kv, using the weighted sum

sðkÞ ¼ krrðkÞ þ kyyðkÞ þ kuuðk � 1Þ þ kvvðkÞ. (4)

The coefficients are configured by the engineer accord-
ing to the nature of the process nonlinearity.

2.2. Online Learning Agent (OLA)

The OLA scans the buffer of recent real-time signals,
prepared by the SPA, and estimates the parameters of
the local models that are excited by the signals. The
most recently derived parameters are submitted to the
MIA only when they pass the verification test and are
proved to be better than the existing set.

The OLA is invoked upon demand from the OS or
autonomously, when an interval of the process signals
with sufficient excitation is available for processing. It
processes the signals batch-wise and using the local
learning approach. An advantage of the batch-wise
concept is that the decision on whether to adapt the
model is not performed in real-time but following a
delay that allows for inspection of the identification
result before it is applied. Thus, better means for control
over data selection is provided.

A problem of distribution of the computation time
required for identification appears with batch-wise
processing of data (opposed to the online recursive
processing that is typically used in adaptive controllers).
This problem is resolved using a multi-tasking operation
system. Since the OLA typically requires considerably
more computation than the real-time control algorithm,
it runs in the background as a low-priority task.

The following procedure, illustrated in Fig. 3, is
executed when the OLA is invoked.

2.2.1. Copy signal buffer

The buffer of the real-time signals is maintained by
the SPA. When the OLA is invoked, the relevant section
of the buffer is copied for further processing.

2.2.2. Excitation check

A quick excitation check is performed at the start, so
that processing of the signals is performed only when
they contain excitation. If the standard deviations of the
signals r(k), y(k), u(k), and v(k) in the active buffer are
below their thresholds, the execution is cancelled.

2.2.3. Copy active MFM from MIA

The online learning procedure always compares the
newly identified local models with the previous set of
parameters. Therefore, the active MFM is copied from
the MIA where it is stored. A default set of model
parameters is used for the local models that have not yet
been identified (see Section 2.3).

2.2.4. Select local models

A local model is selected if the sum of its membership
functions bj(k) over the active buffer normalised by
the active buffer length exceeds a given threshold.
Only the selected local models are included in further
processing.

2.2.5. Identification

The local model parameters are identified using the
fuzzy instrumental variables (FIV) identification method
developed by Blažič et al. (2003). It is an extension of the
linear instrumental variables identification procedure
(Ljung, 1987) for the specified MFM, based on the local
learning approach (Murray-Smith & Johansen, 1997).
The local learning approach is based on the assumption
that the parameters of all local models will not be
estimated in a single regression operation. Compared to
the global approach it is less prone to the problems of
ill-conditioning and local minima.

This method is well suited to the needs of industrial
operation (intuitiveness, gradual building of the non-
linear model, modest computational demands). It
enables inventory of the local models that are not
estimated properly due to insufficient excitation. It is
efficient and reliable in early configuration stages, when
all local models have not been estimated yet. On the
other hand, the convergence in the vicinity of the
optimum is slow. Therefore, it is likely to yield a worse
model fit than methods employing nonlinear optimisa-
tion. The following briefly describes the procedure.

Model identification is performed for each selected
local model (denoted by the index j) separately. The
initial estimated parameter vector ĥj;MIA is copied from
the active MFM, and the covariance matrix Pj,MIA is
initialised to 105 I (identity matrix). The FLS (fuzzy
least-squares) estimates, ĥj;FLS and Pj,FLS, are obtained
using weighted least-squares identification, with bj(k)
used for weighting. The calculation is performed
recursively to avoid matrix inversion. The FIV (fuzzy
instrumental variables) estimates, ĥj;FIV and Pj,FIV, are
calculated using weighted instrumental variables identi-
fication.

In order to prevent result degradation by noise, a
dead zone is used in each step of FIV and FLS recursive
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Fig. 3. Online learning procedure.
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estimation. The vector of parameters and the covariance
matrix are updated only if the absolute weighted
difference between the process output and its prediction
is above the configured noise threshold.
In case of lack of excitation in the branch from u to y

or in the model branch from v to y (or when measured
disturbance is not present at all), variants of the method
with reduced parameter estimate vectors are used.
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2.2.6. Verification/validation

This step is performed by comparing the simulation
output of a selected local model with the actual process
output in the proximity of the local model position. The
normalised sum of mean square errors (MSEj) is
calculated. The proximity is defined by the membership
functions bj. For each of the selected local models, this
step is carried out with three sets of model parameters:
ĥj;MIA; ĥj;FLS; and ĥj;FIV: The set with the lowest MSEj is
selected.

Then, global verification is performed by comparing
the simulation output of the fuzzy model including the
selected set with the actual process output. The normal-
ised sum of mean square errors (MSEG) is calculated. If
the global verification result is improved compared to
the initial fuzzy model, the selected set is sent to the
MIA as the result of online learning, otherwise the
original set ĥj;MIA remains in use.

For each processed local model, the MIA receives the
MSEj, which serves as a confidence index, and a flag
indicating whether the model is new or not.

2.2.7. Model structure estimation

Two model structure estimation units are also
included in the OLA. The dead-time unit (DTU)
estimates the process time delay. The membership
function unit (MFU) suggests whether a new local
model should be inserted. It estimates an additional
local model in the middle of the interval between the two
neighbouring local models that are the most excited. The
model is submitted to the MIA if the global validation
of the resulting fuzzy model is sufficiently improved,
compared to the original fuzzy model.

2.3. Model Information Agent (MIA)

The task of the MIA is to maintain the active MFM
and its status information.

Its primary activity is processing the online learning
results. When a new local model is received from the
OLA, it is accepted if it passes the stability test and its
confidence index is sufficient. If it is accepted, a ‘‘ready
for tuning’’ flag is set for the CAA. Another flag
indicates whether the local model has been tuned since
start-up or not. If the model confidence index is very
low, the automatic mode may be disabled.

The MIA contains a mechanism for inserting addi-
tional local models into the MFM. This may occur
either by request or automatically, using the MFU of
the OLA. The MIA may also store the active MFM to a
local database or recall a previously stored one, which is
useful for changing of modes.

At initial configuration, the MIA is filled with default
local models based on the initial estimation of the
process dynamics. They are not exact but may provide
reliable (although sluggish) control performance, similar
to the Safe mode. Using online learning through
experiments or normal operating records (when the
conditions are appropriate for closed-loop identifica-
tion), an accurate model of the plant is estimated
gradually by receiving identified local models from
the OLA.

2.4. Control Algorithm Agent (CAA)

The CAA comprises an industrial nonlinear control
algorithm and a procedure for automatic tuning of its
parameters from the MFM. Several different CAAs may
be used in the controller and may be interchanged in the
initial configuration phase.

The following modes of operation are supported:
�
 Manual mode: open-loop operation (actuator con-
straints are enforced).

�
 Safe mode: a fixed PI controller with conservatively

tuned parameters.

�
 Auto mode (or several auto modes with different

tuning parameters): a nonlinear controller.

The CAAs share a common interface of interaction
with the OS and a common modular internal structure,
consisting of three layers:
1.
 The control layer offers the functionality of a local
linear controller (or several local linear controllers
simultaneously), including everything required for
industrial control, such as handling of constraints
with anti-windup protection, bump-less mode switch-
ing, etc.
2.
 The scheduling layer performs real-time switching or
scheduling (blending) of tuned local linear control-
lers, so that in conjunction with the control layer a
fixed-parameter nonlinear controller is realised.
3.
 The tuning layer executes the automatic tuning
procedure of the controller parameters from the
MFM when the MIA reports that a new local model
is generated if auto-tuning is enabled. The parameters
of the control layer and the scheduling layer are
replaced in such a manner that real-time control is
not disturbed.

Three CAAs have been developed and each has been
proved effective in specific applications: the Fuzzy
parameter-scheduling controller (FPSC), the dead-time
compensation controller (DTCC), and the rule-based
neural controller (RBNC). In this paper, only the
concept of the FPSC is described briefly in the following
subsection.

2.4.1. Fuzzy parameter-scheduling controller

An overview of the FPSC is shown in Fig. 4.
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Fig. 4. FPSC overview.
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The control layer of the FPSC includes a single PID
controller in the form suitable for controller blending
using velocity-based linearisation. It is equipped with
anti-windup protection and bump-less transfer.

The scheduling layer of the FPSC performs fuzzy
blending of the controller parameters (in the case of Ti,
its inverse value) according to the scheduling variable
s(k) and the membership functions bj(k) of the local
models. The instrument of velocity-based linearisation
enables the dynamics of the blended global controller to
be a linear combination of the local controller dynamics
in the entire operating region, not just around equili-
brium operating points. This provides the potential to
improve performance with few local models and more
transparent behaviour in off-equilibrium operating
points (Leith & Leithead, 1998; Kocijan, Žunič,
Strmčnik, & Vrančić, 2002).

The tuning layer of the FPSC is based on the
magnitude optimum (MO) criterion implemented using
the multiple integration (MI) method (Vrančić,
Strmčnik, & Juričić, 2001). The MO criterion makes
the magnitude (amplitude) of the system closed-loop set-
point response as flat and close to unity as possible for a
large bandwidth (Whiteley, 1946). This results in a
relatively fast and nonoscillatory response of the closed-
loop system. The expressions for calculating the PID
controller parameters using the MO criterion are quite
complex. However, the MI method significantly simpli-
fies the equations and enables the calculation of the PID
controller parameters directly from the process open-
loop time response.

The auto-tuning procedure starts by receiving a
discrete-time local model from the MIA. The model is
converted into a continuous-time local model. Then, the
so-called areas are calculated from the model using the
MI method. Finally, the PI and PID controller
parameters are calculated from the areas. Thanks to
the transparent concept of the FPSC, an experienced
engineer may choose to configure the control algorithm
manually by specifying the local PID controller posi-
tions and parameters, without using the model-based
tuning procedure.

2.5. Control performance monitor (CPM)

The CPM scans the buffer of recent real-time signals
for recognisable events. When events are detected, it
estimates the features of closed-loop control response
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and an overall performance index. Like the OLA, it is
invoked autonomously or upon demand from the OS
and runs as a low-priority task. It consists of three
modules: the buffer pre-processor (BP), the situation
classifier (SC), and the performance estimator (PE), as
shown in Fig. 5.

When the CPM is invoked, the BP copies the relevant
section of the buffer of the real-time signals, which is
maintained by the SPA. It checks if the process is in a
steady-state; if so, it terminates processing. Otherwise, it
filters the signals y and v and performs a low-level
analysis. The SC scans the pre-processed buffer for the
last recognisable event that may be evaluated, or is
otherwise important, e.g., a step change of the reference
signal, a step change of the measured disturbance signal,
an occurrence of an unmeasured disturbance, or the
presence of oscillation. If an event that may be evaluated
is detected and the conditions for feature estimation are
fulfilled (there is no excessive oscillation, the signal-to-
noise ratio is sufficient, the process response has settled
after the event and there was a period of steady-state
before the event), the corresponding buffer interval is
sent to the PE, otherwise the execution is terminated.

The PE may extract the following features of detected
events: overshoot, settling time, rise time, oscillation
decay rate, and tracking error measure or regulation
error measure. Using a fuzzy evaluation procedure, an
overall performance index (PI) is also calculated from
the features.

The CPM results are sent to the human–machine
interface. If poor performance is detected, the CPM
triggers an automatic switchover to the Safe mode.
Other automatic actions include, for example, blocking
the OLA if oscillation is detected. Modifications of the
CAA parameters based on CPM results are not
generally performed because such actions are highly
process-specific, but they may be implemented in specific
applications.

2.6. Operation supervisor (OS)

The OS coordinates the control, modelling, and
tuning activities of the agents and user interaction
through the hierarchical set of dialogue windows of the
human-machine interface (HMI). The OS and the HMI
include the functionality required for automatic user-
friendly experimentation, which is usually required for
controller tuning.

The controller commissioning procedure comprises
the phases of basic settings, approximate estimation of
the process dynamics for safe controller tuning, non-
linear modelling and tuning of the scheduling controller,
and configuring the regime for regular operation.

The OS supports the control engineer by automatic
execution of experiments for identification of local
models. These experiments consist of a series of step
changes about the operating point of the model in either
open or closed loop. In addition, the OS coordinates the
OLA, the MIA and the CAA to automatically process
the signals, build the model and tune the local
controllers. This is the fastest and most reliable way of
controller tuning when experimentation with the plant is
allowed. Automatic conducting of experiments for
closed-loop performance testing using the CPM is also
supported.

Alternatively, scheduling of experiments may not be
required if experimentation is not allowed. In this case,
the controller is initialised in the safe mode, and
processing of the signals for modelling and tuning is
triggered by the OLA autonomously. However, it is
required that sufficient excitation over the whole
operating region is available during regular operation.
The modelling progress is indicated by the status
flags of the local models in the MIA. The flags show
which models have been tuned and their confidence
indices.

While initiative and suggestions of the agents are
helpful during system configuration, this may not be
desired during regular operation. Therefore, at the end
of the commissioning procedure, the system may be
reconfigured to simplify the operation as much as
possible.

A range of operating regimes can be configured by
enabling or disabling the agents and changing their
configuration parameters. This results in a flexible
control system that covers the requirements of a wide
range of applications and may help diagnose problems.
Thus, although designed for control of nonlinear
processes, the ASPECT controller may also be used
for adaptive control using a single linear model or as a
tool for PID controller tuning. Some specific operating
regime options are listed below:
�
 The OLA and/or the CPM may be invoked autono-
mously (during regular operation) or upon OS
demand (following scheduled experiments), or both.

�
 The OLA may estimate the process dead-time

continuously or not.

�
 The OLA may attempt to insert additional local

models when appropriate, or estimate the local
models at the fixed pre-selected positions only.

�
 Controller retuning may be triggered automatically

immediately after each change of the model in MIA
(‘‘adaptive’’ operation), or following an engineer’s
confirmation (‘‘self-tuning’’ operation).

�
 Online learning may also be used for monitoring of

the process dynamics without the intention of
controller tuning, either by adaptation of the model
or by cross-validation of a fixed model.

At start up, the system is initialised from a config-
uration file, which may put it into any phase of the
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configuration procedure. Afterwards, the configuration
procedure may be continued or repeated using the HMI
dialogue windows.
3. Configuration tool

The CT is used on a PC, connected to the PLC
running the RTM. The CT contains a configuration
‘‘wizard’’ that guides the engineer through the typical
scheduling controller commissioning procedure. It is
intended for less experienced users. Experienced en-
gineers may find it more efficient to perform configura-
tion only using the RTM, where other sequences of the
tasks are possible.

The procedure is decomposed into small steps (25
dialogue windows). In each step, instructions are
displayed and default values are suggested by using
rules of thumb, based on the information already
available. Inconsistency warnings may be displayed.

The main phases of the configuration procedure are:
�
 Basic settings: selection of the control signals, the
signal limits, the sampling time, the control algo-
rithm, the scheduling variable, the model order.

�
 Safe mode configuration: estimation of the process

dynamics (experimentation and identification using
the RTM may be used), self-tuning of the ‘‘safe’’
controller parameters (using the RTM), optional
performance verification.

�
 Fuzzy model initialisation: initialisation of the model

positions, initialisation of the local model parameters,
display of the local model parameters and step
responses.

�
 CAA settings: initialisation of the default values,

advanced auto-tuning parameters.

�
 OLA settings: initialisation of the default values,

advanced OLA settings.

�
 CPM settings: initialisation of the default values,

advanced CPM settings.

�
 Experiment settings: initialisation of the default

values, advanced automatic experimentation settings.

�
 Local controller tuning: sequence of automatic

(open- or closed-loop) experimentation, online learn-
ing and tuning using the RTM around each local
model position.

�

Fig. 6. Apparatus for testing of hydraulic valve (simplified).
Performance verification: sequence of automatic
experimentation and performance evaluation using
the RTM around each local model position.

The CT relies on the functionality of the RTM
wherever possible. However, the PC development
environment is more convenient for graphical user
interface design and enables better visualisation of
results, compared to typical PLC systems.
4. Field test

The ASPECT controller has been tested in several
pilot applications, for example on a pH control bench-
mark (Blažič et al., 2003) and a gas–liquid separator
(Kocijan et al., 2003). This section presents a pilot
application on an apparatus for testing hydraulic valves,
located in a hydraulic equipment production plant. A
simplified scheme of the apparatus is shown in Fig. 6. It
comprises a boiler with local temperature control, three
pumps, a pressure sensor, a valve test stand with a
pressure difference sensor, three flow meters that may be
connected alternately for different measurement ranges,
and an expansion vessel. The pumps P1, P2 and P3 are
connected in parallel and may be activated in different
combinations so that different flow ranges may be
achieved. They are equipped with frequency converters;
when switched on, all of them receive the same control
signal u.

The apparatus is used to test the valves in a range of
controlled operating conditions. The most important
control task is to control the pressure difference on the
tested valve (pv) by adjusting the control signal u that is
connected to the active pumps. The process is nonlinear
and time-varying due to the following:
(a)
 the steady-state relation between the pressure
difference on the valve pv and the mass flow through
the valve Qm (related to the pump rotation speed o)
is quadratic,
(b)
 the openness of the valve Sv can be changed during a
test, while the signal Sv is generally not available
(manual valves), and
(c)
 different pumps (or combinations of pumps) can be
used, according to the size of the valve.
These factors severely affect the process dynamics,
which results in the unsatisfactory performance of a
previously existing control system based on a fixed PI
controller.
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Scheduling variable selection is a crucial step when
applying a parameter-scheduling controller. While the
nonlinearity (a) alone may be easily solved using
scheduling from pv, the condition (b) makes the problem
considerably more difficult. Process modelling was used
to find a suitable scheduling variable1.
4.1. Process modelling

A simplified model of the process is a hydraulic loop
that comprises a pump (subscript p) as a flow generator,
two resistive components, the examined valve (subscript
v) and the resistance of the pipeline (subscript l). The
inertia of the liquid in the pipeline acts as an inductive
component. Using Newton’s second law, this is de-
scribed as

pp � pv � pl

� �
S ¼ m

dv

dt
¼

m

rS

dQm

dt
, (5)

where pp, pv, and pl are the pressure differences at the
pump, the valve and the pipeline, S is the pipeline cross-
section, and m, v, r, and Qm are the mass, velocity,
density, and mass flow of the liquid. Applying local
linearisation about the operating point ðpp; pv; pl ;QmÞ;
differentiation of Eq. (5) yields

Dpp � Dpv � Dpl ¼
m

rS2

dDQm

dt
. (6)

Assuming the valve and pipeline resistance characteristic
equations

Qm ¼ kvSv
ffiffiffiffiffi
pv

p
, (7)

Qm ¼ klS
ffiffiffiffi
pl

p
, (8)

where kv and kl are the valve and pipeline resis-
tance coefficients, Dpv and Dpl are calculated using
partial derivation about the operating point (Karba,
1999)

Dpv ¼
2pv

Qm

DQm þ
�2pv

Sv

DSv ¼ RvDQm � bvj jDSv, (9)

Dpl ¼
2pl

Qm

DQm ¼ RlDQm, (10)

where the coefficients Rv, Rl and bv are introduced for
shorter notation (bv is negative). Similarly, Rp and bp are
introduced to describe the pump and may be determined
from pump characteristics

Dpp ¼ � Rp

�� ��DQm þ bpDo. (11)
1The ASPECT controller is designed to be tuned empirically through

experimentation, and process modelling is not generally required.
Inserting Eqs. (9)–(11) into Eq. (6), the dynamic
response of the hydraulic loop is described by

1

Rp

�� ��þ Rv þ Rl

m

rS2

dDQm

dt
þ DQm

¼
1

Rp

�� ��þ Rv þ Rl

bpDoþ bvj jDSv

� �
ð12Þ

or, replacing the internal variable DQm by the process
output Dpv using Eq. (9), by

1

Rp

�� ��þ Rv þ Rl

m

rS2

dDpv

dt
þ Dpv

¼
Rv

Rp

�� ��þ Rv þ Rl

bpDo

� bvj j
Rp

�� ��þ Rl

Rp

�� ��þ Rv þ Rl

�
1

Rp

�� ��þ Rl

m

rS2

dDSv

dt
þ DSv

 !
. ð13Þ

Additionally, the relation between the pump control
signal u and speed o, describing the dynamics of the
pump motor with the frequency converter, must be
given. It may be described by a first order lag

Tp1
dDo
dt
þ Do ¼ bp1Du, (14)

where bp1 is the gain coefficient and Tp1 the time
constant. Therefore, second order dynamics of the
controlled process is assumed.

Observing Eq. (13), Rv ¼ 2pv=Qm is a good scheduling
variable candidate because it represents a property of
the examined valve at the current operating point that
affects both the gain and the time constant of the
controlled process. It may be calculated directly from
the available process measurements. To improve the
stability of the quotient computation at low measure-
ment values, for the actual scheduling variable in the
implemented control system the Qm measurement was
replaced by the control signal u that was filtered
according to the model in Eq. (14); after division, safety
constraints were applied.

4.2. Experimental Trial

Once the scheduling variable is selected, the commis-
sioning of the controller is an empirical procedure,
supported by the automatic experimentation function-
ality of the OS. Firstly, a conventional PI controller is
tuned for the Safe mode so that it maintains stable
control over the operating region. Then, the local
model/controller positions are selected. In this applica-
tion, a default equidistant distribution of six positions
over the operating range of s is used.
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Because experimentation with the process is allowed,
the typical procedure involving experiments around
each local model position is used. In practice, this is the
simplest way to ensure proper excitation of the signals.
Using the Safe mode, the process is consecutively
brought to each of the positions, where auto-tuning
experiments are activated by the push of a button. The
OS conducts a mode switch (open-loop experiments are
preferred), injects the excitation signal containing four
Table 1

Scheduling variable positions, discrete-time local model parameters, derived

Local model positions Local model parameters

OLA model parameters (Tsamp ¼ 0.5 s)

s ¼ ay
u

du b1 b2 a1 a2 r

0.10 1 0.002 0.009 �1.212 0.256 �0.0

0.26 1 0.003 0.014 �1.369 0.410 �0.0

0.42 1 0.004 0.017 �1.392 0.432 �0.0

0.58 1 0.003 0.022 �1.401 0.442 �0.0

0.74 1 0.001 0.026 �1.471 0.508 �0.0

0.90 1 -0.001 0.044 �1.397 0.440 �0.0

aT90% is the rise time from 0 to 90% of open-loop step response in s, T

equivalent model in s, and Kol is the open-loop model gain. a ¼ 1.89 is a sc

 

Fig. 7. Control of pressure difference pv using the PI controller.
step changes, invokes the identification-tuning proce-
dure at the end of the experiment and restores the
original mode. For the first two local models, the
excitation signal amplitude is 4%. Due to lower process
gain it is increased to 8% for other local models,
to improve the signal-to-noise ratio. An overview
of the MIA status shows that all local models have
been identified successfully. The Auto mode is config-
ured after the engineer confirms the new controller
local model parameters, and local controller parameters

Local controller parameters

Derived parametersa

Kol T90% T1 T2 Kp Ti

02 0.25 20.0 8.01 0.38 5.78 8.03

02 0.41 16.5 6.55 0.61 2.58 6.56

05 0.52 16.5 6.41 0.66 1.95 6.29

05 0.61 15.5 6.09 0.68 1.54 6.12

08 0.73 15.0 5.77 0.85 1.14 5.92

19 1.00 15.0 5.80 0.69 0.86 5.97

1 and T2 are the denominator time constants of the continuous-time

aling factor.

S
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v 
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%

)

Fig. 8. Control of pressure difference pv using the FPSC algorithm.
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parameters. Table 1 displays the results of this experi-
mental tuning procedure on the process.

The open-loop gain of the local models obviously
rises with s (and Rv) in full accordance with the model in
Eq. (13), which results in decreasing of Kp. The changes
of the identified time constant T2 are less obvious and do
not appear to be consistent with the dependence of the
time constant in Eq. (13) on Rv, however Rl and |Rp|
vary as well but are not measurable. The variation of Ti

mostly results from the changes in T1, which is
associated wtih the pump dynamics Tf1. There is
considerable but acceptable difference in Kp between
the first two local controllers. The differences between
the local controller parameters in the higher range of s

are small; fewer local controllers could be used in that
region.

The control performance is shown for the PI
controller, realised using the safe mode of the ASPECT
controller, and the FPSC controller. Fig. 7 shows the
measured process response to a sequence of step changes
of the set-point signal over the whole operating range
when using the PI controller. The pressure difference at
the valve pv and the set-point (SP) are shown above, and
the pump control signal u below. The parameters of the
PI controller were determined so that optimal response
Fig. 9. Valve pressure control schem
was achieved at lower values of pv. As the pressure
increased, the response became oscillatory.

Fig. 8 shows the response when using the FPSC
control algorithm. In addition to the signals shown in
Fig. 7, the scheduling variable s is also shown in the
bottom graph of Fig. 8. In comparison to the PI
controller of Fig. 7, this response is optimal over the
entire operating region.

4.3. Test platform

Despite the careful selection and modification of the
algorithms to reduce computational demand, the OLA
and CPM modules are not suitable for implementation
in typical PLCs. A DSP or open controller add-on
module tends to be a more cost-effective solution than
an upper-market PLC. The test platform running the
RTM of the ASPECT controller in this pilot application
consisted of a Mitsubishi A1S series PLC with an INEA
IDR SPAC20 coprocessor, based on the Texas Instru-
ments DSP TMS320C32 at 40MHz with 2MB of RAM,
and a Mitsubishi MAC E700 HMI unit.

The RTM is an extension for INEA IDR BLOK, a
graphical development tool for closed-loop control
applications in the process industry using Mitsubishi
 

e designed using IDR BLOK.
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Electric MELSEC AnSH PLC controllers (INEA d.o.o.,
2001). The FPSC algorithm is included as an additional
controller block ‘‘PID/FPSC’’. Other RTM components
are implemented as separate PLC tasks, coded in C and
downloaded to the PLC in compiled form. They are
supervised using the HMI unit through a hierarchical set
of menus (such as: Operator display, Trends display,
Settings overview, Experiment settings, Online learning
settings, Model parameters, Model status, FPSC set-
tings, FPSC parameters, etc.).

Fig. 9 displays the valve pressure control scheme
designed in the IDR BLOK environment. Unfortu-
nately, the current version does not yet indicate the
association of the PID/FPSC controller block with the
supervisory tasks of the RTM.
5. Conclusion

An advanced self-tuning nonlinear controller has been
successfully implemented on an industrial PLC plat-
form. Several pilot applications, including the one
presented in this paper, have also been successfully
completed. Compared to the industry standard PI
controller, an expected considerable improvement in
the control performance was achieved using the FPSC
control algorithm. Moreover, this performance was
easily achieved in practice with self-tuning using the
online learning procedure, by performing a sequence of
short experiments around a few operating points. The
modular multi-agent structure contributes to remark-
able flexibility of the control system, so that it is easily
reconfigured for various requirements. The work is
currently directed towards further improvements in the
simplicity of use and ease of application to new
processes. A promising future research direction is the
incorporation of the pattern recognition techniques
from the CPM in data evaluation in the online learning
procedure, which may result in a positive contribution
to the reliability of adaptive control.
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